汽车气囊原理方程式图-汽车气囊原理方程式

tamoadmin 0
  1. 汽车气囊里的气体是什么气体?安全气囊的气体是什么
  2. 汽车剧烈碰撞时安全气囊中发生反应
  3. 叠氮钠分解方程式
  4. 汽车安全气囊的工作原理是什么?
  5. 汽车碰撞时气囊里面化学反应是什么
  6. 安全气囊反应方程式吸热还是放热
  7. 汽车中的气囊是什么原理?

汽车安全气囊中的气体是氮气

氮气会在0.1秒的时间内膨胀,在安全气囊当中存在固体的叠氮化钠,这种固体在受到撞击后会迅速生成大量的氮气,安全气囊的使用可以有效地保护车内乘客的安全。

安全气囊的组成:

汽车气囊原理方程式图-汽车气囊原理方程式
(图片来源网络,侵删)

1、气囊自身它由薄薄的尼龙纤维制成,折叠在方向盘或仪表盘中。

2、气囊充气的传感器传感器可检测到相当于以16-24公里/小时的速度撞击墙壁的冲撞力。

3、充气系统安全气囊实际上由与固体火箭助推器类似的系统进行充气, 叠氮化钠和硝酸钾迅速发生反应,生成大量的热氮气,此气体将为气囊充气,气囊在膨胀时将冲出方向盘或仪表盘。

扩展资料:

安全气囊的作用:

在发生交通事故时,汽车安全气囊有助于减轻胸、头和面部在碰撞时受伤的严重性。在汽车发生碰撞前时,首先是汽车要停止运动,车内乘员的惯性力作用下仍以原来速度继续向前运动。

随着汽车停止运动而逐渐停止向前运动,当碰撞比较凶猛时,乘员向前运动更快,即使佩戴了安全带,在安全带使乘员完全停止运动前,他们仍会与车内物相碰。如果此时装在转向盘或仪表板内的气囊充气弹出,它就可以保护乘员减少其与车内物相碰的可能性。

汽车气囊里的气体是什么气体?安全气囊的气体是什么

汽车的安全气囊内有叠氮化钠(NaN3)或硝酸铵(NH4NO3)等物质。当汽车在高速行驶中受到猛烈撞击时,这些物质会迅速发生分解反应,产生大量气体,充满气囊。[叠氮化钠分解产生氮气和固态钠;硝酸铵分解产生大量的一氧化二氮(N2O)气体和水蒸气]  新型安全气囊加入了可分级充气或释放压力的装置,以防止一次突然点爆产生的巨大压力对人头部产生的伤害,特别在乘客未佩戴安全带的时候,可导致生命危险。具体形式有:  1.分级点爆装置,即气体发生器分两级点爆,第一级产生约40%的气体容积,远低于最大压力,对人头部移动产生缓冲作用,第二级点爆产生剩余气体,并且达到最大压力。总的来说,两级点爆的最大压力小于单级点爆。这种形式,压力逐步增加。  2.分级释放压力方式,囊袋上开有泄压孔或可调节压力的孔,分为完全凭借气体压力顶开的方式或电脑控制的拉片Tether。这种方式,一开始压力达到设定极限,然后瞬时释放压力,以避免过大伤害。  气囊打开条件  为了保证安全气囊在适当的时候打开,汽车生产厂家都规定了气囊的起爆条件,只有满足了这些条件,气囊才会爆炸。虽然在一些交通事故中,车内乘员碰得头破血流,甚至出现生命危险,车辆接近报废,但是如果达不到安全气囊爆炸的条件,气囊还是不会打开。  安全气囊打开需要合适的速度和碰撞角度。从理论上讲,只有车辆的正前方左右大约60°之间位置撞击在固定的物体上,速度高于30KM/h,这时安全气囊才可能打开。这里所说的速度不是我们通常意义上所理解的车速,而是在试验室中车辆相对刚性固定障碍物碰撞的速度,实际碰撞中汽车的速度高于试验速度气囊才能打开。  汽车发生碰撞时的主要受力部位是保险杠和车身纵梁,为了缓冲碰撞时的冲击力,车身前部大都设计有碰撞缓冲区,而且车身的刚度公布也是不均匀的。在一些事故中,例如当轿车与没有后部防护装置的卡车发生钻入性追尾事故,或轿车碰撞护栏后发生翻车事故,或发生车身侧面碰撞等,这样的事故往往没有车身前部的直接撞击,主要是车身上部和侧面发生碰撞,碰撞车身部位的刚度很小,虽然车舱发生了很大的变形,造成了车内乘员受伤或死亡,但是由于碰撞部位不对,有时候气囊并不能打开。  安全气囊使用过程中存在的缺陷  安全气囊作为提高汽车安全性的有效措施之一越来越受到人们的重视。世界各国都投人大量的人力物力致力予安全气囊的开发,使得安全气囊系统得到大力发展。在一些实际的碰撞事故中证明安全气囊确实具有降低乘员伤亡的功效,但也发现了其存在的一些间题。安全气囊在使用中存在的问题有: 1.气囊可能在很低的车速时打开。汽车在很低车速行驶而发生碰撞事故时,乘员和驾驶员系上安全带即可,完全不需要安全气囊展开起保护作用。如果这时展开气囊反而会造成不必要的浪费,甚至还可能因安全气囊的展开加重碰撞伤害。 2.气囊的启动会对乘员造成伤害。安全气囊系统启动时将冲开气囊盖板,并且在瞬间展开充气,很可能对乘员造成冲击;产生的灼热气体也会灼伤乘员和驾驶员。 3.当乘客偏离座位或座位上无人儿童乘坐时,气囊系统的启动不仅起不到应有的保护作用,还可能会对乘员造成一定的伤害。  对现有安全气囊的改进思考  从安全气囊在使用过程中存在的缺陷可知,现有安全气囊的基本设计目标是用来对付严重交通事故的,但在一些不太严重,的事故中,系统反应过度,反而会对驾乘人员施加作用过大,适得其反,造成不必要的伤害。 针对实际使用中存在的问题,我们更希望在安全气囊展开之前,安全气囊系统能够精确感应汽车发生的碰撞,并按照程序来判断碰撞事故的严重程度,如果碰撞级别比较低的话,只需将安全带的预紧机构拉紧即可;如果碰撞级别比较高,需要启动安全气囊,则将点燃气囊的指令传递给气囊系统。这也就是要求安全气囊系统能够准确地感应所发生的碰撞事故;并且能模仿人脑,根据实际的碰撞程度来判别安全气囊是否需要展开,有一定灵活性;并且能够针对不同体形的乘员适当的调整安全气囊。  安全气囊的改进和引用  1.磁电式传感器的用 传感器的触发通常有:开关式,纯机械式,单点电子式,侧撞式,应变式等。目前国际上对汽车上安全气囊的传感器触发方式也没有一个统一标准。不仅是因为其种类繁多,而且.是因为装于车身上不同位置的传感器触发方式也不同。为使传感器能够方便地安装在各个需要的感应部位,使其能够正确、适时地感应碰撞,可选用磁电式传感器。 磁电式传感器可以安装在车身上的任何位置,只要稍微调整一下某些参数值,使得其能够识别峰值为0588 m/s:和时间脉冲为0-20 ms的碰撞加速度信号即可。只要碰撞加速度峰值和时间脉冲宽度同时满足条件,就会向气囊发出触发信号,展开气囊,对人体进行保护。 传感器结构如图1所示,它由外壳(非磁性材料)、磁性材料、惯性体(非磁性材料)、连接在惯性体上‘的软铁、支持和调节位移幅值的弹簧、安装在与外壳连接的凸柱内的永久磁铁和绕制在软铁上的线圈及引线组成。当传感器受到碰撞加速度时,惯性体产生反向加速度,导致通过线圈的磁通量发生变化,在线圈引线两端产生钟形脉冲信号,当调整弹簧刚度时,可改变加速度信号的宽度。 传感器的信号判别电路由三部分组成:信号幅度判别电路;信号宽度判别电路;有用、无用信号判别电路。通过对碰撞信号进行多方位的判别,可使控制装置获取的碰撞信号更全面,发出的点火控制更准确,从而确保安全气囊在必要的情况下展开。 如何获得稳定的冲击加速度信号是研究;传感器的关键,也是保证传感器准确获取碰撞信号的关键。磁电加速度传感器用落锤冲击试验装置来调整校正其感应敏感度。释放锤头,与橡胶面碰击时,安装在锤头上面的加速度或磁电式传感器将感受到冲击加速度。不同落高对应不同加速度;调整橡胶厚度,可改变信号宽度;调整落锤高度,可改变信号幅度。 磁电式传感器不仅电子判别电路出错率低,感应碰撞信号的可信度高而准确;而且通过标锤落定实验可以调节它的感应范围宽度,满足汽车碰撞产生脉冲的再现,从而还可以安装于车身上任何部位。还有就是它设计简单,价格低廉,对绝大多数汽车使用者来说都不再是望而却步的奢侈品。 2.智能化控制系统的用 对安全气囊控制系统的要求是准确判断事故的碰撞强度,控制气囊的展开与否。针对安全气囊在使用中的缺陷,必须进一步提高控制系统灵活性、准确性,为此我们可以用智能式控制系统。 1.碰撞传感器。安全气囊系统中的重要部件,其功能是检测、判断汽车发生碰撞后的撞击信号,以便决定是否展开缓冲气囊。碰撞传感器主要有三种类机械式传感器在早期的安全气囊中使用较多,主要应用惯性原理,利用传感器中元件的惯性力克服弹簧力来触发气体发生器。机械式在加速度较低时保证不启动气囊,可靠性较高;但只能单点传感,对机械部件的品质、精度和耐磨性要求极高。 电子式传感器是一种应用最早的碰撞传感器,根据电子原理,利用电信号来反映车身减速度,而后根据电信号来判别是否展开缓冲气囊。 机电式传感器用机电结合的方式,将机械信号转化为电子信号,再利用电子信号点爆安全气囊。即具有机械式的优点,又能克服机械式传感器本身存在的缺陷,安装在车身上任何位置,以便得到较好的减速信号,而且能够在同一位置安装多个传感器。 2.缓冲气囊。气囊一般由防裂性能好的聚酞胺织物制成,它是一种半硬的泡沫塑料,能承受较大的压力;经过硫化处理,可减少气囊冲气膨胀时的惯性力;为使气体密封,气囊里面涂有涂层材料。气囊的大小、形状、漏气性能是确定安全气囊保护效果的重要因素,必须根据不同汽车的实际情况来确定。 目前,安全气囊系统开发人员正在根据神经网络原理开发智能型气囊系统。它主要是利用神经末梢(即各种传感器)将各自探索到的周围环境的各种信息传输给中枢神经(即电脑或微机),并能将碰撞事故的碰撞类型,碰撞事故严重程度以及碰撞时的车速等信息一起传递给电脑,由电脑对这些信息进行加工处理分析,做出相应反应,并执行与这些信息相对应的、正确的气囊保护程序,即所谓的智能式控制系统。 智能式控制系统一般由两部分组成,软件部分和硬件部分。硬件部分主要由车载部分的电子控制单元(包括单片机、传感器、点火电路等)和地面部分(包括串行通讯电路、计算机系统等);软件部分主要由单、片机部分和微机部分组成。控制系统框图如图2所示。气囊伤人、保护效果不佳或者浪费等状况。 3.乘员探测系统的选择 针对气囊未能对不同的乘员做出相应的保护,我们可在乘员座位上安装一个乘员探测系统,对车座上是否有人,乘员的体型大小,以及就座时偏离正中情况进行探测。相当于专门安装一个传感器,探测的乘员乘坐信息,并传递给中央电脑控制中心。如果发生碰撞的话,控制中心在对各种传感器传过来的信息进行判断的同时综合考虑乘员探测系统探测所得的乘员乘坐信息。这样的话,安全气囊系统就可以针对驾驶员和乘员的乘坐情况适时适量展开气囊,完全避免 理想的安全气囊是可以针对各种不同的特殊情况对汽车的使用者进行保护。安全气囊应尽可能多地收集和利用有关乘员形***置信息及撞车类型和撞车速度的数据,建立数据库,对碰撞中乘员和车的有关信息进行识别判断,调整安全约束系统参数,使人体获得最佳保护。要实现这一理想,以我们目前的研.究来说可能还有很长的一段差距,但我们可以逐步完成。以上的探讨思考也只是向理想迈进的一个步伐而已,相信今后随着科学技术研究的发展,我们的汽车安全措施会更加的完善。 4.气体发生器的多元化发展 对于气体发生器,不仅要求其工作可靠,性能稳定,耐久性好,符合环保要求,而且要求尽量减轻其质量和降低成本。尤其针对安全气囊气体伤人的情况,更是要求对气体发生器加以改进。目前汽车上的气囊系统大量用以叠氮化物作为气体发生物质的推进剂型气体发生器,其它类型的气体发生器,包括混合气体型气体发生器、液体(液态气)型气体发生器、压缩空气蓄能型气体发生器和硝化纤维型气体发生器等也在积极研制。如摩尔顿公司生产的一种低密度、无毒的气体型气体发生器,与现用的相比具有体积小、质量轻的优点;布雷德公司开发的一种新型无钠叠氮化物气体发生器,耗用量不到钠叠氮化物发气剂的40%,而能产生等量的气体,从而使其体积减小,质量减轻。 安全气囊的发展趋势  随着科技的发展和人们对汽车安全重视程度的提高,汽车安全技术中的安全气囊技术近年来也发展得很快,智能化、多安全气囊是今后整体安全气囊系统发展的必然趋势。 新的技术可以更好地识别乘客类型,取不同的保护措施。系统用重量、红外、超声波等传感器来判断乘客与仪表板远近、重量、身高等因素,进而在碰撞时判断是否点爆气囊、用1级点火还是多级点火、点爆力有多大,并与安全带形成总体控制。通过传感器,气囊系统还可以判断出车辆当前经历的碰撞形式,是正面碰撞还是角度碰撞,侧面碰撞还是整车的翻滚运动,以便驱动车身不同位置的气囊,形成对乘客的最佳保护。  网络技术的应用也是安全气囊系统的发展方向。在汽车网络中,有一种应用面比较窄,但是非常重要的网络即Safe-By-Wire。 Safe-By-Wire是专门用于汽车安全气囊系统的总线,Safe-By-Wire技术旨在通过综合运用多个传感器和控制器来实现安全气囊系统的细微控制。Safe-By-Wire Plus总线标准是由汽车电子供应商和部件供应商如飞利浦德尔福等公司提出。与整车系统常用的CAN、FlexRay等总线相比,Safe-By-Wire的优势在于它是专门面向安全气囊系统的汽车LAN接口标准。为了保证系统在汽车出事故时也不受破坏,Safe-By-Wire中嵌入有多重保护功能。比如说,即使线路发生短路,安全气囊系统也不会因出错而起动。Safe-By-Wire技术将会在汽车安全气囊系统中获得广泛的应用。  A安全气囊的历史  汽车安全气囊系统,简称SRS,是一种保护系统。  安全气囊最早由瑞典人发明,到20世纪80年代,安全气囊技术基本成熟。  12年,通用汽车首次进行大范围的安全气囊现场试验,并于14年将安全气囊列为若干型号轿车的选购配置。  1996年,通用汽车推出业界第一个防止侧面撞击的安全气囊,可减轻气囊膨胀给儿童造成伤害。  2002年,通用汽车宣布将在2003年型号的大型卡车和运动休闲车上酉谩正面安全气囊感知器,可根据副驾驶座上乘员的体重自动关闭安全气囊。  B安全气囊的工作原理  当车辆发生碰撞时,安全气囊控树模块快速对信号做出处理,确认发生碰撞的严重程度已超出安全带的保护能力,便迅速释放气囊,使乘员的头、胸部直接与较为柔软有弹性的气囊接触,从而通过气囊的缓:中作用减轻乘员的伤害。一般说来,轻微的碰撞不会打开安全气囊,只有在车辆正面一定角度范围内才是打开安全气囊的有效碰撞范围,后碰、侧碰、翻转都不会引发安全气囊打开。 需要强调的是,安全气囊只是,在不系安全带的状况下,安全气囊不但不能对乘员起到防护作用,还会对乘员有严重的杀伤力。安全气囊的爆发力是惊人的,足以击断驾驶者的颈椎。因此,系好安全带是安全气囊发挥保护作用的一个重要条件。  安全气囊的使用  驾驶者应将座位尽量向后移,以便有足够空间使安全气囊在发生意外扩张后充分发挥其保护作用。驾驶者不宜倾前控车,坐姿要正确及紧贴座位背椅,且扣上安全带。12岁以下的小孩应坐在汽车的后排,并扣上安全带。体重不超过18公斤的幼孩应放在配有幼孩座椅装置的后排座位,并扣上安全带。  安全气囊有哪些特点?  安全气囊可将撞击力均匀地分布在头部和胸部,防止脆弱的乘客肉体与车身产生直接碰撞,大大减少受伤的可能性。安全气囊对于在遭受正面撞击时,的确能有效保护乘客,即使未系上安全带,防撞安全气囊仍足以有效减低伤害。据统计,配备安全气囊的车发生正面碰撞时,可降低乘客受伤的程度高达64%,甚至在其中有80%的乘客未系上安全带!至于来自侧方及后座的碰撞,则仍有赖于安全带的功能。此外,气囊爆发时的音量大约只有130分贝,在人体可忍受的范围;气囊中78%的气体是氮气,十分安定且不含毒性,对人体无害;爆出时带出的粉末是维持气囊在折叠状态下不粘在一起的润滑粉末,对人体亦无害。 安全气囊同样也有它不安全的一面。据计算,若汽车以60km的时速行驶,突然的撞击会令车辆在0.2秒之内停下,而气囊则会以大约300Km/h的速度弹出,而由此所产生的撞击力约有180公斤,这对于头部、颈部等人体较脆弱的部位就很难承。因此,如果安全气囊弹出的角度、力度稍有差错,就有可能酿出一场“悲剧”。 安全气囊在近几年得到了飞速的发展,价格大幅度下降,装备了安全气囊的轿车也从过去的中高级轿车向中低级轿车发展。同时,有些轿车前排安装了乘客用的安全气囊(即双安全气囊规格),乘客用的安全气囊与驾车者用的安全气囊相似,只是气囊的体积要大些,所需的气体也多一些而已。

为了说明安全气囊的基本原理,这里首先说明汽车发生事故时造成乘员伤亡的原因。当汽车发生碰撞事故时,汽车和障碍物之间的碰撞称为一次碰撞,一次碰撞的结果导致汽车速度急剧下降,速度从35km/h降到零的时间约150ms左右;乘员和汽车内部结构之间的碰撞称之为二次碰撞,由于惯性的作用,当汽车急剧降速时,乘员要保持原来的速度向前运动,于是就发生了乘员和方向盘、仪表板、挡风玻璃等之间的碰撞,从而造成了乘员的伤亡.汽车安全气囊的基本思想是,在发生—次碰撞后,二次碰撞前,迅速在乘员和汽车内部结构之间打开一个充满气体的袋子,使乘员扑在气袋上,避免或减缓二次碰撞,从而达到保护乘员的目的。由于乘员和气袋相碰时,因振荡造成乘员伤害,所以一般在气囊的背面开两个直径25mm左右的圆孔。这样,当乘员和气囊相碰时,借助圆孔的放气可减轻振荡,放气过程同时也是一个释放能量的过程,因此可以很快地吸收乘员的动能,有助于保护乘员。

安全气囊最重要的指标是可靠性,如果不该点火而点火打开气囊称为误点火:如果应该点火而没有点火称之为漏点火,如果点火太晚则称之为迟点火,无论是误点火、漏点火、还是迟点火都是不能允许的。为了提高安全气囊系统的可靠性,防止电源线在碰撞中断线、电池遭到破坏,系统中备有储能电容或电池,以保证即使掉电也能够开气囊。为了监测传感器、电子电路、气体发生器;系统一般还有故障诊断模块、并设有信号灯于予以显示。汽车安全气囊系统一般有左右挡板传感器各一个,还有一个传感器放在含有诊断模块的控制器中,气囊有司机席(Driver Side)正面碰撞气囊和乘客席(Pssseneer Side)正面碰撞气囊,另外还有警告灯。当发生前面碰撞时,两个挡板传感器中只要有一个闭合,诊断模块就会根据送来的信号进行处理和判断,认为有必要点火后时即发出点火信号使气囊充气。

现在要介绍的是 气体发生器。

基本化学原理:

汽车的安全气囊内有叠氮酸钠(NaN3)或硝酸铵(NH4NO3)等物质。当汽车在高速行驶中受到猛烈撞击时,这些物质会迅速发生分解反应,产生大量气体,充满气囊。[叠氮化钠分解产生氮气和固态钠;硝酸铵分解产生大量的一氧化二氮(N2O)气体和水蒸气]

化学方程式

NaN3 + NH4NO3 ------->N2 + Na + N2O + H2O(g)

注:这只是最基本的化学反应原理方程式,实际的反应是非常复杂的。

汽车剧烈碰撞时安全气囊中发生反应

很多车主会对汽车的安全气囊好奇,安全气囊会在汽车受到撞击时迅速充满气体,保护车上人员的头部和胸部,那么汽车气囊里的气体是什么气体?

安全气囊里面的气体是氮气,安全气囊里面放置的是叠氮化钠NaN3,叠氮化钠NaN3会在受到剧烈撞击时,迅速分解生成大量的氮气,其化学方程式是NaN3=NaH+N2。大量的氮气会充满整个安全气囊,保护车上人员不与汽车直接接触,氮气是一种无毒无害也不会燃烧的气体,即使是安全气囊泄露了,里面的氮气也不会对人体造成伤害。

现在市面上的安全气囊都是新型安全气囊,新型安全气囊是用分级充气的方式,气囊会通过两次充气后启动,防止气囊突然弹起对乘车人员的头部造成伤害。日常要注意检查安全气囊功能是否正常,如果安全气囊的故障灯亮起,需要及时进行维修。

叠氮钠分解方程式

此时发生化学反应产生氮气或一氧化氮气体(初中化学):

1、气囊中填充叠化钠:NaN3——Na +N2

2、填充硝酸铵 : NH4NO3——N2O+H2O

注意:

方程式未平衡

汽车安全气囊的工作原理是什么?

叠氮钠分解方程式是NaN?=NaH+N?↑,这是安全气囊的物质。安全气囊中有固体的叠氮化钠NaN3,受到剧烈撞击时迅速分解生成大量氮气,所以气囊中充的是氮气。叠氮化钠为白色六方系晶体,无味,无臭,纯品无吸湿性,无剧毒。

汽车安全气囊的工作原理:汽车行驶过程中,传感器系统不断向控制装置发送速度变化信息,由控制装置对这些信息加以分析判断,如果所测的加速度、速度变化量或其它指标超过预定值(即真正发生了碰撞),则控制装置向气体发生器发出点火命令或传感器直接控制点火,点火后发生爆炸反应,产生N2或将储气罐中压缩氮气释放出来充满碰撞气袋。乘员与气袋接触时,通过气袋上排气孔的阻尼吸收碰撞能量,达到保护乘员的目的。

汽车碰撞时气囊里面化学反应是什么

汽车安全气囊装置是指发生撞车事故时,在发生二次碰撞前,气囊发生膨胀从而保护乘员的装置。安全气囊是一种装置,它是座椅安全带的乘员约束装置。关于它的发明,还有一个故事,据说是1952年美国工程师John W.Hetrick因为受一场严重的交通事故的启发,开始研究汽车安全气囊发明的。

首先当汽车发生碰撞时,由碰撞传感器检测到相关碰撞信号,比如设置一个加速度传感器,检测加速度的变化,相关控制系统会判断是否开启充气装置,由于撞击过程很短,要求气囊从触发到完成充气非常短,约25-35毫秒。

充气的过程涉及如下的化学反应2NaN3=2Na+3N2↑,产生50升到90升的氮气,迅速充满气囊,氮气不具有毒性,在空气中含量是78%,是理想的填充气体。此外气囊中有少量的氧化铁,氧化铁的作用就是除去金属钠,生成的金属钠单质化学性质活泼,存在于气囊中是个很大的隐患,因此再用 氧化铁除去。

爆炸条件及原理:需要碰撞传感器接收到外力的信号,达到危险程度后安全气囊电脑模块处理信号,发送电流到各个安全气囊装置(比如现在新款车好多都是只爆开撞击一边的安全气囊,或者左边,或者右边,都属于电脑模块控制的)。

安全气囊爆开的时间是0.03秒不到,原理就是安全气囊电脑模块传输电流引爆安全气囊。安全气囊的结构:点火器,产生气体的,过滤气体的钢丝网,安全气囊发生器钢外壳。现在目前来说中国自己造安全气囊的技术很成熟了,多数都是直接出口。

安全气囊反应方程式吸热还是放热

补充: 在车上的探测碰撞点火装置会将突然减速信号传递给气体发生器的引爆装置,使相关物质生成氮气,使乘员前方气囊充气,充满气囊所用时间不到0.05s。而产生气体的功臣则是叠氮化钠,NaN3,据计算100g NaN3爆炸后可以生成约50L的氮气,完全充满气囊。另外在NaN3内还添加有一些其他成分的化学试剂,可以帮助NaN3保持良好的活性,并分解由NaN3爆炸所产生的金属钠。气囊的侧面有排气孔,当乘员碰压膨胀的气囊时,气囊内氮气排出,原来较热的气体在排出后快速冷却,吸收乘员向前运动的能量。

汽车中的气囊是什么原理?

先介绍一下气囊工作原理:当汽车发生正面碰撞事故时,安全气囊控制系统检测到冲击力(减速度)超过设定值时,安全气囊电脑立即接通充气元件中的电爆管电路,点燃电爆管内的点火介质,火焰引燃点火药粉和气体发生剂,产生大量气体,在0.03秒钟的时间内即将气囊充气,使气囊急剧膨胀,冲破方向盘上装饰盖板鼓向驾驶员和乘员,使驾驶员和乘员的头部和胸部压在充满气体的气囊上,缓冲对驾驶员和乘员的冲击,随后又将气囊中的气体放出。

气囊膨胀会对外做功,而这能量来源于化学反应.故此反应是放热反应,尽管他需要先加热才会发生.

希望能帮助到你,望纳,谢谢!

为了说明安全气囊的基本原理,这里首先说明汽车发生事故时造成乘员伤亡的原因。当汽车发生碰撞事故时,汽车和障碍物之间的碰撞称为一次碰撞,一次碰撞的结果导致汽车速度急剧下降,速度从35km/h降到零的时间约150ms左右;乘员和汽车内部结构之间的碰撞称之为二次碰撞,由于惯性的作用,当汽车急剧降速时,乘员要保持原来的速度向前运动,于是就发生了乘员和方向盘、仪表板、挡风玻璃等之间的碰撞,从而造成了乘员的伤亡.汽车安全气囊的基本思想是,在发生—次碰撞后,二次碰撞前,迅速在乘员和汽车内部结构之间打开一个充满气体的袋子,使乘员扑在气袋上,避免或减缓二次碰撞,从而达到保护乘员的目的。由于乘员和气袋相碰时,因振荡造成乘员伤害,所以一般在气囊的背面开两个直径25mm左右的圆孔。这样,当乘员和气整相碰时,借助圆孔的放气可减轻振荡,放气过程同时也是一个释放能量的过程,因此可以很快地吸收乘员的动能,有助于保护乘员。

安全气囊一般由传感器(sensor)、电控单元(ECU)、气体发生器(inflator)、气囊(bag)、续流器(clockspring)等组成,通常气体发生器和气囊等做在一起构成气囊模块(airbag module)。传感器感受汽车碰撞强度,并将感受到的信号传送到控制器,控制器接收传感器的信号并进行处理,当它判断有必要打开气囊时,立即发出点火信号以触发气体发生器,气体发生器接收到点火信号后,迅速点火井产生大量气体给气囊充气。

安全气囊最重要的指标是可靠性,如果不该点火而点火打开气囊称为误点火:如果应该点火而没有点火称之为漏点火,如果点火太晚则称之为迟点火,无论是误点火、漏点火、还是迟点火都是不能允许的。为了提高安全气囊系统的可靠性,防止电源线在碰撞中断线、电池遭到破坏,系统中备有储能电容或电池,以保证即使掉电也能够开气囊。为了监测传感器、电子电路、气体发生器;系统一般还有故障诊断模块、并设有信号灯于予以显示。汽车安全气囊系统系统一般有左右挡板传感器各一个,还有一个传感器放在含有诊断模块的控制器中,气囊有司机席(Driver Side)正面碰撞气囊和乘客席(Pssseneer Side)正面碰撞气囊,另外还有警告灯。当发生前面碰撞时,两个挡板传感器中只要有一个闭合,诊断模块就会根据送来的信号进行处理和判断,认为有必要点火后时即发出点火信号使气囊充气。

基本化学原理:

汽车的安全气囊内有叠氮酸钠(NaN3)或硝酸铵(NH4NO3)等物质。当汽车在高速行驶中受到猛烈撞击时,这些物质会迅速发生分解反应,产生大量气体,充满气囊。[叠氮化钠分解产生氮气和固态钠;硝酸铵分解产生大量的一氧化二氮(N2O)气体和水蒸气]

化学方程式:

NaN3 + NH4NO3 ------->N2 + Na + N2O + H2O(g)

注:这只是最基本的化学反应原理方程式,实际的反应是非常复杂的

标签: #气囊

上一篇汽车质量检测鉴定机构排名榜-汽车质量检测鉴定机构排名

下一篇当前文章已是最新一篇了